Дом

блог

  • Свойства эпоксидных смол
    Свойства эпоксидных смол
    Mar 19, 2024
    1. Показатели эпоксидных групп Это наиболее важный характеристический показатель эпоксидной смолы, который используется для обозначения содержания эпоксидной группы в молекуле смолы, и существует три основных способа выражения, включая эпоксидное число, эпоксидный индекс и эпоксидный эквивалент. Значение эпоксидной смолы определяется как количество эпоксидных групп (моль) на 100 г эпоксидной смолы.,единица измерения – моль/100 г. Определение эпоксидного числа в основном предназначено для расчета количества отвердителя, добавляемого к эпоксидной смоле для отверждения. Количество отвердителя представляет собой массу отвердителя, добавляемую на 100 г отвержденной эпоксидной смолы. Эпоксидный индекс — количество эпоксидных групп (моль) на 1 кг эпоксидной смолы, единица измерения — моль/кг. С точки зрения Международной системы измерения (единицы СИ) индекс эпоксидной смолы является более подходящим, чем значение эпоксидной смолы, которое в 10 раз превышает значение эпоксидной смолы. Эпоксидный эквивалент — масса (г) эпоксидной смолы, содержащей 1 моль эпоксидных групп, единица измерения — г/моль. Сегменты цепи между эпоксидными группами становятся все длиннее и длиннее по мере увеличения молекулярной массы эпоксидной смолы, поэтому эпоксидный эквивалент эпоксидных смол с высокой относительной молекулярной массой также увеличивается. Физическое количество эпоксидного эквивалента обычно используется для описания эпоксидной группы эпоксидной смолы в США, Японии и Европе.   2. Содержание гидроксила Молекулярная цепь эпоксидной смолы бисфенола А-типа содержит большое количество вторичной гидроксильной структуры, чем больше значение степени полимеризации n, тем больше ее молекулярная масса, тем выше содержание гидроксила. Он может сшиваться с фенольными смолами, аминосмолами или полиизоцианатами и способствовать реакции отверждения. Поэтому при контроле процесса отверждения краски на основе эпоксидной смолы необходимо определять содержание гидроксилов в эпоксидной смоле. Существует два наиболее часто используемых метода определения содержания гидроксилов. Гидроксильное число F — это количество гидроксила, содержащегося в 100 г эпоксидной смолы, единица измерения — моль/100 г. А гидроксильный эквивалент H — это масса (г) эпоксидной смолы, содержащей 1 моль гидроксила, единица измерения — г/моль.   3. Точка размягчения Эпоксидная смола представляет собой смесь гомологичных преполимеров с разной степенью полимеризации и не имеет фиксированной температуры плавления или процесса плавления. Точка размягчения обычно относится к температуре, при которой эпоксидная смола превращается из твердой в мягкую и проявляет определенную текучесть в процессе нагрева. Температура размягчения эпоксидной смолы может характеризовать средний размер молекулярной массы и распределение смолы, молекулярная масса с высокой температурой размягчения велика, а молекулярная масса с низкой температурой размягчения мала. Эпоксидные смолы можно разделить по температуре размягчения на три типа. Тип   Точка размягчения     Степень полимеризации   Низкомолекулярная эпоксидная смола <50°С <2 Эпоксидная смола средней молекулярной массы 50~95°С 2~5 Высокомолекулярная эпоксидная смола >100°С >5     4. Вязкость Вязкость эпоксидных смол влияет на текучесть и работоспособность смол и покрытий. Вязкость увеличивается по мере увеличения средней молекулярной массы эпоксидной смолы и уменьшается по мере уменьшения молекулярно-массового распределения. Вязкость эпоксидных смол чрезвычайно чувствительна к температуре и быстро снижается с увеличением температуры, поэтому ее обычно выражают как вязкость при определенной температуре.   5. Содержание хлора Количество хлора, содержащегося в эпоксидной смоле (включая органический хлор и неорганический хлор), называется хлорным числом. Хлор в эпоксидной смоле по форме существования разделяется на органический хлор и неорганический хлор. Органический хлор образуется из остатков недостаточного замыкания колец при производстве эпоксидной смолы, который называется легкогидролизуемым хлором. Неорганический хлор образуется из остаточного хлорида натрия, который недостаточно отмывается при производстве эпоксидных смол. Органический хлор измеряет реакцию смолы, а неорганический хлор измеряет уровень постпроизводственной обработки эпоксидных смол. Оба вредны для электрических свойств отвержденного вещества и коррозионной стойкости.    
    Читать далее
  • Базовые знания об эпоксидных смолах.
    Базовые знания об эпоксидных смолах.
    Jan 16, 2024
    Определение эпоксидной смолыЭпоксидная смола относится к молекулярной структуре, молекулярная структура которой содержит две или более эпоксидных групп и в соответствующих химических реагентах под действием соединения может образовывать трехмерную сетку отверждаемого материала. Эпоксидная смола – важный класс термореактивных смол. Эпоксидные смолы включают как эпоксидные олигомеры, так и низкомолекулярные соединения, содержащие эпоксидные группы. Эпоксидные смолы широко используются в области водного хозяйства, транспорта, машиностроения, электроники, бытовой техники, автомобилестроения и аэрокосмической промышленности в качестве смоляной матрицы для клеев, покрытий и композитов. Характеристики эпоксидных смол и их отверждающих составов.1. Высокие механические свойства. Эпоксидная смола обладает сильной когезией, плотной молекулярной структурой, поэтому ее механические свойства выше, чем у фенольной смолы, ненасыщенного полиэфира и других термореактивных смол общего назначения.2. Сильная адгезия. Система отверждения эпоксидной смолы содержит очень активную эпоксидную группу, гидроксильную группу и эфирную связь, аминную связь, сложноэфирную связь и другие полярные группы. Таким образом, продукты, отверждаемые эпоксидной смолой, обладают превосходной адгезией к полярным основаниям, таким как металл, керамика, стекло, бетон и дерево.3. Усадка при отверждении незначительна. Обычно его усадка составляет от 1% до 2%. Это одна из наименьших разновидностей усадки термореактивных смол при отверждении (фенольные смолы от 8% до 10%, ненасыщенные полиохлаждающие смолы от 4% до 6%, силиконовые смолы от 4% до 8%). Коэффициент линейного расширения также имеет значение. очень маленькая, обычно 6*10-5/°C, поэтому после отверждения объем практически не изменяется.4. Хорошая технологичность. Отверждение эпоксидной смолы в основном не приводит к образованию низкомолекулярных летучих веществ, поэтому это может быть формование под низким давлением или контактное формование под давлением. Он может взаимодействовать с различными отвердителями для производства порошковых покрытий с высоким содержанием твердых веществ, не содержащих растворителей, покрытий на водной основе и других экологически чистых покрытий.5. Отличная электроизоляция. Эпоксидная смола – одна из лучших разновидностей термореактивной смазки с промежуточными электрическими свойствами. 6. Хорошая стабильность и отличная устойчивость к химическим веществам. Эпоксидная смола без щелочи, соли и других примесей не портится. При правильном хранении (герметично, без влаги, не выдерживать высокие температуры) срок его хранения может достигать 1 года. Если тест признан квалифицированным по истечении этого периода, его все равно можно использовать. Эпоксидный отверждаемый материал обладает превосходной химической стабильностью. Его устойчивость к щелочной кислоте, соли и другим коррозионным воздействиям в средах выше, чем у ненасыщенных полиэфирных смол, фенольных смол и других термореактивных смол. Поэтому в качестве антикоррозионной грунтовки используется эпоксидная смола. Поскольку материал, отвержденный эпоксидной смолой, имеет трехмерную сетчатую структуру и может противостоять пропитке маслом и так далее, поэтому он используется в большом количестве резервуаров, танкеров, самолетов, общей облицовки топливных баков и так далее. Недостатки эпоксидной смолыЭпоксидная смола также имеет некоторые недостатки, такие как плохая устойчивость к атмосферным воздействиям. Эпоксидная смола обычно содержит ароматическую эфирную связь, ее отвержденный материал легко разрушается после облучения солнечным светом, что приводит к разрыву цепи, поэтому обычный материал, отвержденный эпоксидной смолой типа бисфенола А, легко теряет блеск под воздействием наружного солнечного света и постепенно мелеет, поэтому он не подходит для использования в качестве верхнего покрытия для наружных работ. Кроме того, эффективность отверждения эпоксидной смолы при низких температурах низкая, обычно ее необходимо отверждать при 10 ° C или более. При температуре ниже 10°C отверждение происходит медленно, что очень неудобно для крупных объектов, таких как корабли, мосты, гавани, нефтяные резервуары и другие конструкции холодного сезона. История развития эпоксидной смолыИсследования эпоксидной смолы начались в 1930-е годы, в 1934 году Германия И.Г. П. Шлак из компании Farben обнаружил, что амины могут вступать в реакцию с эпоксидными группами, полимеризуя полимеры и производя пластмассы с низкой усадкой, на что был получен немецкий патент. Позже Швейцария Gebr. де Трей Пьер Кастан и американская компания Devoe & Raynolds S.O. Грили, они используют бисфенол А и эпихлоргидрин путем реакции поликонденсации для производства эпоксидной смолы, а органические полиамины или фталевый ангидрид могут отверждать смолу, отвержденный материал обладает отличными адгезионными свойствами. Вскоре швейцарская компания Ciba, американская компания Shell и Dow Chemical Company начали промышленное производство эпоксидных смол и исследования в области их применения. В 1950-х годах при производстве и применении обычной эпоксидной смолы с бисфенолом А одновременно появилось несколько новых эпоксидных смол. 1960 лет назад произошло появление термопластичных фенольных эпоксидных смол, галогенированных эпоксидных смол, полиолефиновых эпоксидных смол. Разработка эпоксидных смол в Китае началась в 1956 году, первые успехи были получены в Шэньяне и Шанхае, а промышленное производство началось в 1958 году в Шанхае и Уси. В середине 1960-х годов началось изучение некоторых новых алициклических эпоксидных смол, в том числе фенольной эпоксидной смолы, полибутадиеновой эпоксидной смолы, эпоксидной смолы на основе глицидилового эфира, эпоксидной смолы на основе глицидиламина и т. д. К концу 1970-х годов в Китае сформировалась полноценная промышленная система из мономерные смолы, вспомогательные материалы, от научных исследований и производства до применения. 
    Читать далее
1 2 3 4
В общей сложности 4страницы

оставить сообщение

оставить сообщение
Если вы заинтересованы в нашей продукции и хотите узнать более подробную информацию, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
Представлять на рассмотрение

Дом

Продукты

WhatsApp

Связаться с нами